Recombinant Human AP-2 complex subunit mu (AP2M1)
Product Specifications
Product Name Alternative
AP-2 mu chain; Adaptin-mu2; Adaptor protein complex AP-2 subunit mu; Adaptor-related protein complex 2 subunit mu; Clathrin assembly protein complex 2 mu medium chain; Clathrin coat assembly protein AP50; Clathrin coat-associated protein AP50; HA2 50KDA subunit; Plasma membrane adaptor AP-2 50KDA protein
Abbreviation
Recombinant Human AP2M1 protein
Gene Name
AP2M1
UniProt
Q96CW1
Expression Region
1-435aa
Organism
Homo sapiens (Human)
Target Sequence
MIGGLFIYNHKGEVLISRVYRDDIGRNAVDAFRVNVIHARQQVRSPVTNIARTSFFHVKRSNIWLAAVTKQNVNAAMVFEFLYKMCDVMAAYFGKISEENIKNNFVLIYELLDEILDFGYPQNSETGALKTFITQQGIKSQHQTKEEQSQITSQVTGQIGWRREGIKYRRNELFLDVLESVNLLMSPQGQVLSAHVSGRVVMKSYLSGMPECKFGMNDKIVIEKQGKGTADETSKSGKQSIAIDDCTFHQCVRLSKFDSERSISFIPPDGEFELMRYRTTKDIILPFRVIPLVREVGRTKLEVKVVIKSNFKPSLLAQKIEVRIPTPLNTSGVQVICMKGKAKYKASENAIVWKIKRMAGMKESQISAEIELLPTNDKKKWARPPISMNFEVPFAPSGLKVRYLKVFEPKLNYSDHDVIKWVRYIGRSGIYETRC
Tag
N-terminal 6xHis-SUMO-tagged
Type
Developed Protein
Source
E.coli
Field of Research
Transport
Relevance
Component of the adaptor protein complex 2 (AP-2) . Adaptor protein complexes function in protein transport via transport vesicles in different mbrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to mbrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of mbranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the mbrane proteins involved in receptor-mediated endocytosis. AP-2 ses to play a role in the recycling of synaptic vesicle mbranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmbrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 mu subunit binds to transmbrane cargo proteins; it recognizes the Y-X-X-Phi motifs. The surface region interacting with to the Y-X-X-Phi motif is inaccessible in cytosolic AP-2, but becomes accessible through a conformational change following phosphorylation of AP-2 mu subunit at 'Tyr-156' in mbrane-associated AP-2. The mbrane-specific phosphorylation event appears to involve assbled clathrin which activates the AP-2 mu kinase AAK1 . Plays a role in endocytosis of frizzled family mbers upon Wnt signaling .
Endotoxin
Not test
Purity
Greater than 90% as determined by SDS-PAGE.
Activity
Not Test
Form
Liquid or Lyophilized powder
Buffer
If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Function
Component of the adaptor protein complex 2 (AP-2) . Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 mu subunit binds to transmembrane cargo proteins; it recognizes the Y-X-X-Phi motifs. The surface region interacting with to the Y-X-X-Phi motif is inaccessible in cytosolic AP-2, but becomes accessible through a conformational change following phosphorylation of AP-2 mu subunit at 'Tyr-156' in membrane-associated AP-2. The membrane-specific phosphorylation event appears to involve assembled clathrin which activates the AP-2 mu kinase AAK1 (By similarity) . Plays a role in endocytosis of frizzled family members upon Wnt signaling (By similarity) .
Molecular Weight
65.7 kDa
References & Citations
"The DNA sequence, annotation and analysis of human chromosome 3."Muzny D.M., Scherer S.E., Kaul R., Wang J., Yu J., Sudbrak R., Buhay C.J., Chen R., Cree A., Ding Y., Dugan-Rocha S., Gill R., Gunaratne P., Harris R.A., Hawes A.C., Hernandez J., Hodgson A.V., Hume J. Gibbs R.A.Nature 440:1194-1198 (2006)
Storage Conditions
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself. Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Protein Length
Full Length
Available Sizes
Curated Selection
Explore Other Products
Discover premium biology products from our extensive collection of 20M+ items